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Abstract

This paper introduces a new approach to constructing meaningful lower dimen-
sional representations of sets of data points. We argue that constraining the map-
ping between the high and low dimensional spaces to be a diffeomorphism is a
natural way of ensuring that pairwise distances are approximately preserved. Ac-
cordingly we develop an algorithm which diffeomorphically maps the data near to
a lower dimensional subspace and then projects onto that subspace. The problem
of solving for the mapping is transformed into one of solving for an Eulerian flow
field which we compute using ideas from kernel methods. We demonstrate the
efficacy of our approach on various real world data sets.

1 Introduction

The problem of visualizing high dimensional data often arises in the context of exploratory data
analysis. For many real world data sets this is a challenging task, as the spaces in which the data
lie are often too high dimensional to be visualized directly. If the data themselves lie on a lower
dimensional subspace however, dimensionality reduction techniques may be employed, which aim
to meaningfully represent the data as elements of this lower dimensional subspace.

The earliest approaches to dimensionality reduction are the linear methods known as principal com-
ponents analysis (PCA) and factor analysis (Duda et al., 2000). More recently however, the major-
ity of research has focussed on non-linear methods, in order to overcome the limitations of linear
approaches—for an overview and numerical comparison see e.g. (Venna, 2007; van der Maaten
et al., 2008), respectively. In an effort to better understand the numerous methods which have been
proposed, various categorizations have been proposed. In the present case, it is pertinent to make
the distinction between methods which focus on properties of the mapping to the lower dimensional
space, and methods which focus on properties of the mapped data, in that space. A canonical ex-
ample of the latter is multidimensional scaling (MDS), which in its basic form finds the minimizer
with respect to y1,y2, . . . ,ym of (Cox & Cox, 1994)

m
∑

i,j=1

(‖xi − xj‖ − ‖yi − yj‖)
2
, (1)

where here, as throughout the paper, the xi ∈ R
a are input or high dimensional points, and the

yi ∈ R
b are output or low dimensional points, so that b < a. Note that the above term is a

function only of the input points and the corresponding mapped points, and is designed to preserve
the pairwise distances of the data set.

The methods which focus on the mapping itself (from the higher to the lower dimensional space,
which we refer to as the downward mapping, or the upward mapping which is the converse) are less
common, and form a category into which the present work falls. Both auto-encoders (DeMers &
Cottrell, 1993) and the Gaussian process latent variable model (GP-LVM) (Lawrence, 2004) also
fall into this category, but we focus on the latter as it provides an appropriate transition into the
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main part the paper. The GP-LVM places a Gaussian process (GP) prior over each high dimen-
sional component of the upward mapping, and optimizes with respect to the set of low dimensional
points—which can be thought of as hyper-parameters of the model—the likelihood of the high di-
mensional points. Hence the GP-LVM constructs a regular (in the sense of regularization, i.e. likely
under the GP prior) upward mapping. By doing so, the model guarantees that nearby points in
the low dimensional space should be mapped to nearby points in the high dimensional space—an
intuitive idea for dimensionality reduction which is also present in the MDS objective (1), above.

The converse is not guaranteed in the original GP-LVM however, and this has lead to the more re-
cent development of the so-called back-constrained GP-LVM (Lawrence & Candela, 2006), which
essentially places an additional GP prior over the downward mapping. By guaranteeing in this way
that (the modes of the posterior distributions over) both the upward and downward mappings are
regular, the back constrained GP-LVM induces something reminiscent of a diffeomorphic mapping
between the two spaces. This leads us to the present work, in which we derive our new algorithm,
Diffeomap, by explicitly casting the dimensionality reduction problem as one of constructing a dif-
feomorphic mapping between the low dimensional space and the subspace of the high dimensional
space on which the data lie.

2 Diffeomorphic Mappings and their Practical Construction

In this paper we use the following definition:

Definition 2.1. Let U and V be open subsets of R
a and R

b, respectively. The mapping F : U → V
is said to be a diffeomorphism if it is bijective (i.e. one to one), smooth (i.e. belonging to C∞), and
has a smooth inverse map F−1.

We note in passing the connection between this definition, our discussion of the GP-LVM, and di-
mensionality reduction. The GP-LVM constructs a regular upward mapping (analogous to F−1)
which ensures that points nearby in R

b will be mapped to points nearby in R
a, a property referred

to as similarity preservation in (Lawrence & Candela, 2006). The back constrained GP-LVM si-
multaneously ensures that the downward mapping (analogous to F ) is regular, thereby additionally
implementing what its authors refer to as dissimilarity preservation. Finally, the similarity between
smoothness (required of F and F−1 in Definition 2.1) and regularity (imposed on the downward and
upward mappings by the GP prior in the back constrained GP-LVM) complete the analogy. There is
also an alternative, more direct motivation for diffeomorphic mappings in the context of dimension-
ality reduction, however. In particular, a diffeomorphic mapping has the property that it does not
lose any information. That is, given the mapping itself and the lower dimensional representation of
the data set, it is always possible to reconstruct the original data.

There has been significant interest from within the image processing community, in the construction
of diffeomorphic mappings for the purpose of image warping (Dupuis & Grenander, 1998; Joshi
& Miller, 2000; Karaçali & Davatzikos, 2003). The reason for this can be understood as follows.
Let I : U → R

3 represent the RGB values of an image, where U ⊂ R
2 is the image plane. If we

now define the warped version of I to be I ◦W , then we can guarantee that the warp is topology
preserving, i.e. that it does not “tear” the image, by ensuring the W be a diffeomorphism U → U .
The following two main approaches to constructing such diffeomorphisms have been taken by the
image processing community, the first of which we mention for reference, while the second forms
the basis of Diffeomap. It is a notable aside that there seem to be no image warping algorithms
analogous to the back constrained GP-LVM, in which regular forward and inverse mappings are
simultaneously constructed.

1. Enforcement of the constraint that |J(W )|, the determinant of the Jacobian of the map-
ping, be positive everywhere. This approach has been successfully applied to the problem
of warping 3D magnetic resonance images (Karaçali & Davatzikos, 2003), for example,
but a key ingredient of that success was the fact that the authors defined the mapping W
numerically on a regular grid. For the high dimensional cases relevant to dimensionality
reduction however, such a numerical grid is highly computationally unattractive.

2. Recasting the problem of constructing W as an Eulerian flow problem (Dupuis & Grenan-
der, 1998; Joshi & Miller, 2000). This approach is the focus of the next section.
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Figure 1: The relationship between v(·, ·), φ(·, ·) and ψ(·) for the one dimensional case ψ : R → R.

2.1 Diffeomorphisms via Flow Fields

The idea here is to indirectly define the mapping of interest, call it ψ : R
a → R

a, by way of a “time”
indexed velocity field v : R

a × R → R
a. In particular we write ψ(x) = φ(x, 1), where

φ(x, t) = x +

∫ t

s=0

v(φ(x, s), s)ds. (2)

This choice of φ satisfies the following Eulerian transport equation with boundary conditions:

∂φ(x, s)

∂s
= v(φ(x, s), s), φ(x, 0) = x. (3)

The role of v is to transport a given point x from its original location at time 0 to its mapped location
φ(x, 1) by way of a trajectory whose position and tangent vector at time s are given by φ(x, s) and
v(φ(x, s), s), respectively (see Figure 1). The point of this construction is that if v satisfies certain
regularity properties, then the mapping ψ will be a diffeomorphism. This fact has been proven in a
number of places—one particularly accessible example is (Dupuis & Grenander, 1998), where the
necessary conditions are provided for the three dimensional case along with a proof that the induced
mapping is a diffeomorphism. Generalizing the result to higher dimensions is straightforward—this
fact is stated in (Dupuis & Grenander, 1998) along with the basic idea of how to do so.

We now offer an intuitive argument for the result. Consider Figure 1, and imagine adding a new
starting point x

′, along with its associated trajectory. It is clear that for the mapping ψ to be a
diffeomorphism, then for any such pair of points x and x

′, the associated trajectories must not
collide. This is because the two trajectories would be identical after the collision, x and x

′ would
map to the same point, and hence the mapping would not be invertible. But if v is sufficiently regular
then such collisions cannot occur.

3 Diffeomorphic Dimensionality Reduction

The framework of Eulerian flow fields which we have just introduced provides an elegant means
of constructing diffeomorphic mappings R

a → R
a, but for dimensionality reduction we require

additional ingredients, which we now introduce. The basic idea is to construct a diffeomorphic
mapping in such a way that it maps our data set near to a subspace of R

a, and then to project onto
this subspace. The subspace we use, call it Sb, is the b-dimensional one spanned by the first b
canonical basis vectors of R

a. Let P(a→b) : R
a → R

b be the projection operator which extracts the
first b components of the vector it is applied to, i.e.

P(a→b)x = (I Z) x, (4)

where I ∈ R
a×a is the identity matrix and Z ∈ R

a×b−a is a matrix of zeros. We can now write the
mapping ϕ : R

a → R
b which we propose for dimensionality reduction as

ϕ(x) = P(a→b)φ(x, 1), (5)
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where φ is given by (2). We choose each component of v at each time to belong to a reproducing
kernel Hilbert Space (RKHS) H, so that v(·, t) ∈ Ha, t ∈ [0, 1]. If we define the norm1

‖v(·, t)‖
2
Ha ,

a
∑

j=1

∥

∥

∥
[v(·, t)]j

∥

∥

∥

2

H

, (6)

then ‖v(·, t)‖
2
Ha < ∞,∀t ∈ [0, 1] is a sufficient condition which guarantees that ψ is a diffeo-

morphism, provided that some technical conditions are satisfied (Dupuis & Grenander, 1998; Joshi
& Miller, 2000). In particular v need not be regular in its second argument. For dimensionality
reduction we propose to construct v as the minimizer of

O = λ

∫ 1

t=0

‖v(·, t)‖
2
Hd dt+

m
∑

j=1

L (ψ(xj)) , (7)

where λ ∈ R
+ is a regularization parameter. Here, L measures the squared distance to our b

dimensional linear subspace of interest Sb, i.e.

L(x) =

a
∑

d=b+1

[x]
2
d . (8)

Note that this places special importance on the first b dimensions of the input space of interest—
accordingly we make the natural and important preprocessing step of applying PCA such that as
much as possible of the variance of the data is captured in these first b dimensions.

3.1 Implementation

One can show that the minimizer in v of (7) takes the form

[v(·, t)]d =

m
∑

j=1

[αd(t)]j k(φ(xj , t), ·), d = 1 . . . a, (9)

where k is the reproducing kernel of H and αd is a function [0, 1] → R
m. This was proven directly

for a similar specific case (Joshi & Miller, 2000), but we note in passing that it follows immediately
from the celebrated representer theorem of RKHS’s (Schölkopf et al., 2001), by considering a fixed
time t. Hence, we have simplified the problem of determining v to one of determiningm trajectories
φ(xj , ·). This is because not only does (9) hold, but we can use standard manipulations (in the
context of kernel ridge regression, for example) to determine that for a given set of such trajectories,

αd(t) = K(t)−1ud(t), d = 1, 2, . . . , a, (10)

where t ∈ [0, 1], K(t) ∈ R
m×m, ud(t) ∈ R

m and we have let [K(t)]j,k = k(φ(xj , t), φ(xk, t))

along with [ud(t)]j = ∂tφ(xj , t). Note that the invertibility of K(t) is guaranteed for certain kernel

functions (including the Gaussian kernel which we employ in all our Experiments, see Section 4),
provided that the set φ(xj , t) are distinct. Hence, one can verify using (9), (10) and the reproducing
property of k in H (i.e. the fact that 〈f, k(x, ·)〉

H
= f(x),∀f ∈ H), that for the optimal v,

‖v(·, t)‖
2
Ha =

a
∑

d=1

ud(t)
⊤K(t)−1ud(t). (11)

This allows us to write our objective (7) in terms of the m trajectories mentioned above:

O = λ

∫ 1

t=0

a
∑

d=1

ud(t)
⊤K(t)−1ud(t) +

m
∑

j=1

a
∑

d=b+1

[φ(xj , 1)]
2
d
. (12)

So far no approximations have been made, and we have constructed an optimal finite dimensional
basis for v(·, t). The second argument of v is not so easily dealt with however, so as an approximate
by discretizing the interval [0, 1]. In particular, we let tk = kδ, k = 0, 1, . . . , p, where δ = 1/p,
and make the approximation ∂t=tk

φ(xj , t) = (φ(xj , tk) − φ(xj , tk−1)) /δ. By making the further

1Square brackets w/ subscripts denote matrix elements, and colons denote entire rows or columns.
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Figure 2: Dimensionality reduction of motion capture data. (a) The data mapped from 102 to
2 dimensions using Diffeomap (the line shows the temporal order in which the input data were
recorded). (b)-(d) Three rendered input points corresponding to the marked locations in (a).

approximation
∫ tk

t=tk−1

K(t)−1dt = δK(tk−1)
−1, and substituting into (12) we obtain the first form

of our problem which is finite dimensional and hence readily optimized, i.e. the minimization of

λ

δ

a
∑

d=1

p
∑

k=1

(Φk,d − Φk−1,d)
⊤
K(tk)−1 (Φk,d − Φk−1,d) +

b
∑

d=a+1

‖Φp,d‖
2 (13)

with respect to Φk,d ∈ R
m for k = 1, 2, . . . , p and d = 1, 2, . . . , a, where [Φk,d]j = [φ(xj , tk)]

d
.

3.2 A Practical Reduced Set Implementation

A practical problem with (13) is the computationally expensive matrix inverse. In practice we reduce
this burden by employing a reduced set expansion which replaces the sum over 1, 2, . . . ,m in (9)
with a sum over a randomly selected subset I, thereby using |I| = n basis functions to represent
v(·, t). In this case it is possible to show using the reproducing property of k(·, ·) that the resulting
objective function is identical to (13), but with the matrix K(tk)−1 replaced by the expression

Km,n (Kn,mKm,n)
−1
Kn,n (Kn,mKm,n)

−1
Kn,m, (14)

where Km,n = K⊤
n,m ∈ R

m×n is the sub-matrix of K(tk) formed by taking all of the rows, but

only those columns given by I. Similarly, Kn,n ∈ R
n×n is the square sub-matrix of K(tk) formed

by taking a subset of both the rows and columns, namely those given by I. For optimization we
also use the gradients of the above expression, the derivation of which we have omitted for brevity.
Note however that by factorizing appropriately, the computation of the objective function and its
gradients can be performed with an asymptotic time complexity of n2(m+ a).

4 Experiments

It is difficult to objectively compare dimensionality reduction algorithms, as there is no universally
agreed upon measure of performance. Algorithms which are generalizations or variations of older
ones may be compared side by side with their predecessors, but this is not the case with our new
algorithm, Diffeomap. Hence, in this section we attempt to convince the reader of the utility of our
approach by visually presenting our results on as many and as varied realistic problems as space
permits, while providing pointers to comparable results from other authors. For all experiments
we fixed the parameters which trade off between computational speed and accuracy, i.e. we set the
temporal resolution p = 20, and the number of basis functions n = 300. We used a Gaussian kernel
function k(x,y) = exp

(

−‖x − y‖2/(2σ2)
)

, and tuned the σ parameter manually along with the

regularization parameter λ. For optimization we used a conjugate gradient type method2 fixed to
1000 iterations and with starting point [Φk,d]j = [xj ]d , k = 1, 2, . . . p.

2Carl Rasmussen’s minimize.m, which is freely available from http://www.kyb.mpg.de/˜carl.
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Figure 3: Vowel data mapped from 24 to 2 dimensions using (a) PCA and (b)-(c) Diffeomap. Plots
(b) and (c) differ only in the parameter settings of Diffeomap, with (b) corresponding to minimal
one nearest neighbor errors in the low dimensional space—see Section 4.2 for details.

4.1 Motion Capture Data

The first data set we consider consists of the coordinates in R
3 of a set of markers placed on a person

breaking into a run, sampled at a constant frequency, resulting in m = 217 data points in a = 102
dimensions, which we mapped to b = 2 dimensions using Diffeomap (see Figure 2). This data set
is freely available from http://accad.osu.edu/research/mocap/mocap_data.htm

as Figure 1 Run, and was also considered in (Lawrence & Candela, 2006), where it was shown
that while the original GP-LVM fails to correctly discover the periodic component of the sequence,
the back constrained version maps poses in the same part of the subject’s step cycle nearby to
each other, while simultaneously capturing variations in the inclination of the subject. Diffeomap
also succeeded in this sense, and produced results which are competitive with those of the back
constrained GP-LVM.

4.2 Vowel Data

In this next example we consider a data set of a = 24 features (cepstral coefficients and delta
cepstral coefficients) of a single speaker performing nine different vowels 300 times per vowel,
acquired as training data for a vocal joystick system (Bilmes & et.al., 2006), and publicly available
in pre-processed form from http://www.dcs.shef.ac.uk/˜neil/fgplvm/. Once again
we used Diffeomap to map the data to b = 2 dimensions, as depicted in Figure 3. We also depict
the poor result of linear PCA, in order to rule out the hypothesis that it is merely the PCA based
initialization of Diffeomap (mentioned after equation (8) on page 4) which does most of the work.

The results in Figure 3 are directly comparable to those provided in (Lawrence & Candela, 2006)
for the GP-LVM, back constrained GP-LVM, and Isomap (Tenenbaum et al., 2000). Visually, the
Diffeomap result appears to be superior to those of the GP-LVM and Isomap, and comparable to the
back constrained GP-LVM. We also measured the performance of a one nearest neighbor classifier
applied to the mapped data in R

2. For the best choice of the parameters σ and λ, Diffeomap made
140 errors, which is favorable to the figures quoted for Isomap (458), the GP-LVM (226) and the
back constrained GP-LVM (155) in (Lawrence & Candela, 2006). We emphasize however that this
measure of performance is at best a rough one, since by manually varying our choice of the param-
eters σ and λ, we were able to obtain a result (Figure 3 (c)) which, although leads to a significantly
higher number of such errors (418), is arguably superior from a qualitative perspective to the result
with minimal errors (Figure 3 (b)).

4.3 USPS Handwritten Digits

We now consider the USPS database of handwritten digits (Hull, 1994). Following the methodol-
ogy of the stochastic neighbor embedding (SNE) and GP-LVM papers (Hinton & Roweis, 2003;
Lawrence, 2004), we take 600 images per class from the five classes corresponding to digits 0, 1, 2,
3, 4. Since the images are in gray scale and a resolution of 16 by 16 pixels, this results in a data set
of m = 3000 examples in a = 256 dimensions, which we again mapped to b = 2 dimensions as
depicted in Figure 4. The figure shows the individual points color coded according to class, along
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(a) (b)

Figure 4: USPS handwritten digits 0-4 mapped to 2 dimensions using Diffeomap. (a) Mapped points
color coded by class label. (b) A composite image of the mapped data—see Section 4.3 for details.

with a composite image formed by sequentially drawing each digit in random order at its mapped
location, but only if it would not obscure a previously drawn digit. Diffeomap manages to arrange
the data in a manner which reveals such image properties as digit angle and stroke thickness. At the
same time the classes are reasonably well separated, with the exception of the ones which are split
into two clusters depending on the angle. Although unfortunate, we believe that this splitting can
be explained by the fact that (a) the left- and right-pointing ones are rather dissimilar in input space,
and (b) the number of fairly vertical ones which could help to connect the left- and right-pointing
ones is rather small. Diffeomap seems to produce a result which is superior to that of the GP-LVM
(Lawrence, 2004), for example, but may be inferior to that of the SNE (Hinton & Roweis, 2003). We
believe this is due to the fact that the nearest neighbor graph used by SNE is highly appropriate to the
USPS data set. This is indicated by the fact that a nearest neighbor classifier in the 256 dimensional
input space is known to perform strongly, with numerous authors having reported error rates of less
than 5% on the ten class classification problem.

4.4 NIPS Text Data

Finally, we present results on the text data of papers from the NIPS conference proceedings volumes
0-12, which can be obtained from http://www.cs.toronto.edu/˜roweis/data.html.
This experiment is intended to address the natural concern that by working in the input space rather
than on a nearest neighbor graph, for example, Diffeomap may have difficulty with very high dimen-
sional data. Following (Hinton & Roweis, 2003; Song et al., 2008) we represent the data as a word
frequency vs. document matrix in which the author names are treated as words but weighted up by
a factor 20 (i.e. an author name is worth 20 words). The result is a data set of m = 1740 papers
represented in a = 13649 words + 2037 authors = 15686 dimensions. Note however that the input
dimensionality is effectively reduced by the PCA preprocessing step to m − 1 = 1739, that being
the rank of the centered covariance matrix of the data.

As this data set is difficult to visualize without taking up large amounts of space, we have included
the results in the supplementary material which accompanies our NIPS submission. In particular,
we provide a first figure which shows the data mapped to b = 2 dimensions, with certain authors (or
groups of authors) color coded—the choice of authors and their corresponding color codes follows
precisely those of (Song et al., 2008). A second figure shows a plain marker drawn at the mapped
locations corresponding to each of the papers. This second figure also contains the paper title and
authors of the corrsponding papers however, which are revealed when the user moves the mouse
over the marked locations. Hence, this second figure allows one to browse the NIPS collection con-
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textually. Since the mapping may be hard to judge, we note in passing that the correct classification
rate of a one nearest neighbor classifier applied to the result of Diffeomap was 48%, which compares
favorably to the rate of 33% achieved by linear PCA (which we use for preprocessing). To compute
this score we treated authors as classes, and considered only those authors who were color coded
both in our supplementary figure and in (Song et al., 2008).

5 Conclusion

We have presented an approach to dimensionality reduction which is based on the idea that the map-
ping between the lower and higher dimensional spaces should be diffeomorphic. We provided a
justification for this approach, by showing that the common intuition that dimensionality reduction
algorithms should approximately preserve pairwise distances of a given data set is closely related to
the idea that the mapping induced by the algorithm should be a diffeomorphism. This realization
allowed us to take advantage of established mathematical machinery in order to convert the dimen-
sionality reduction problem into a so called Eulerian flow problem, the solution of which is guar-
anteed to generate a diffeomorphism. Requiring that the mapping and its inverse both be smooth is
reminiscent of the GP-LVM algorithm (Lawrence & Candela, 2006), but has the advantage in terms
of statistical strength that we need not separately estimate a mapping in each direction. We showed
results of our algorithm, Diffeomap, on a relatively small motion capture data set, a larger vowel
data set, the USPS image data set, and finally the rather high dimensional data set derived from the
text corpus of NIPS papers, with successes in all cases. Since our new approach performs well in
practice while being significantly different to all previous approaches to dimensionality reduction, it
has the potential to lead to a significant new direction in the field.
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